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The a!ect of high-frequency excitation on the low-frequency motions of dynamic systems
is considered. It is suggested to di!erentiate between weak, strong and very strong high-
frequency excitations. Several approaches and di$culties connected with the analysis of
these systems are shown. Systems with strong excitation are examined in a general form. As
an example, the responses of a one-degree-of-freedom system to strong and very strong,
high-frequency external and parametric excitations are compared. It is indicated, how the
results achieved could be generalized for mechanical systems with very strong excitation.
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1. INTRODUCTION

Systems with high-frequency excitation have recently attracted great attention. The
conventional technical approach to systems with high-frequency excitation, i.e., the
excitation, where the frequency signi"cantly exceeds the natural frequencies of the system, is
that this excitation is almost unessential for the low-frequency motions of the system,
because of its strong "ltering properties. However, it is well known, that this point of view is
not always correct. If high-frequency excitation is strong enough, it is able to signi"cantly
change the properties of the system with respect to slow motions. Numerous example of
such systems can be found in the works of Bogoliubov and Mitropolskii, Nayfeh,
Blekhman, Thomsen and others [1}8]. The main approach for the useful analysis of these
systems is the separation of motions.

The separation of motions is one of the main ideas for asymptotic analysis of oscillating
systems with small or large parameters. It is connected with the fact, that solutions of many
types of dynamic systems can be represented as a superposition of fast oscillations and slow
evolution. These slow motions are the main reason for interest in most applications.
Powerful asymptotic methods, such as the averaging method of Bogoliubov and
Mitropolskii [1], are in fact nothing but a practical realization of this idea. The same could
be said about the direct separation of motions method, which originated in the works of
Kapitsa [9] and was most generally formulated by Blekhman [3, 4]. The method of
multiple scales, developed in the works of Naifeh [2, 10], is similar in substance to the
averaging method.

In this work, three di!erent levels of high-frequency excitation*weak, strong and very
strong are analyzed. Several approaches and di$culties connected with the analysis of these
systems are shown. Systems with strong excitation are examined in general form. As an
example we compare the response of a one-degree-of-freedom system to strong and very
strong high-frequency external and parametric excitation. Lastly, some ways are indicated,
2-460X/00/320219#15 $35.00/0 ( 2000 Academic Press
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how the achieved results could be generalized for mechanical systems with very strong
excitation.

2. CLASSIFICATION OF SYSTEMS WITH THE HIGH-FREQUENCY EXCITATION.
SYSTEMS WITH WEAK EXCITATION

First of all, in this work we are going to consider mechanical systems, described by
systems of second order di!erential equations in the following form:

xK"uaU(x, x5 , t, ut), (1)

where x is an n-dimensional vector of the generalized co-ordinates and x5 is a vector of the
generalized velocities, uA1 is a big parameter. We take U to be an n-dimensional vector of
forces, which depends 2n-periodically on the fast time q"ut.

Depending on the magnitude of the integer parameter a we shall distinguish between
systems with weak (a"0), strong (a"1) and very strong (a"2) excitation. Weak
excitation is trivial, but it illustrates in the best way, how asymptotic methods are used for
such problems. Let us use, for example, the averaging technique and rewrite our system as
a system of 2n "rst order equations:

x5 "y, y5 "U (x, y, t, q). (2)

Converting to the fast time q as an independent variable, we get

x@"ey, y@"eU(x, y, t, q), e"
1

u
@1, t@"e. (3)

If our function U is smooth enough, we get the standard form system of Bogoliubov and
Mitropolskii and can directly apply the averaging procedure. The equation of the "rst
approximation takes the form

nG"SU(n, n5 , t, q)T. (4)

Here SUT is the average of U with respect to the fast time q, and (n, n5 ) are asymptotically
close to the solution of the original system (x, x5 ) for the time interval

q"O(u) or t"O(1).

The obtained solution is a superposition of small high-frequency oscillations and slow
evolution of the system for both the generalized co-ordinates and the generalized velocities.
This case is well known, so more complicated case of the systems with strong excitation
should be considered.

3. SYSTEM WITH STRONG EXCITATION

Particular systems with strong excitation are usual in various applications. A lot of them
are studied in detail in the works of Blekhman [3, 4], who considered these systems in the
following form:

xK"F (x, x5 , t, q)#uU(x, t, q) (5)
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for which some very e$cient asymptotic methods are established. However, the absence of
x5 in the strong part of the excitation U is signi"cant for these special methods.

Usually, these systems are used if we are interested in analyzing the motion of a machine
supposing, that the inertia of its housing is signi"cantly larger then the inertia of its moving
parts. If the mass or inertia of the mechanism's moving parts is not small (for example, the
type of modern mechanisms often found in crank gears or vane pumps), equations of
motion containing quick oscillating inertia coe$cients will be obtained. These equations
contain large, fast oscillating terms. These depend not only on the generalized co-ordinates
but also on the system's generalized velocities.

Another example of systems with strong excitation depending on the "rst derivative of
the unknown function, appears if we investigate vibrations or wave propagation in
inhomogenious media. For example, the longitudinal waves in a rod with a periodic or
quasi-periodic structure. In this case the typical equations with strong excitation of general
form appear naturally with respect to the spatial co-ordinates. Equations with the slow
modulated, high-frequency excitation, which we are going to analyze in sections 4 and 5 of
this paper, are "rst of all typical for this group for applications. Firstly, a general
mathematical approach to the systems with strong excitation is given, described by a system
of di!erential equations as follows:

xK"F(x, x5 , t, q)#uU(x, x5 , t, q), (6)

where here F is a weak part and U is a strong part of the high-frequency excitation. In order
to analyze this system, we are going to use the multiple-scale technique. This is because it is
easier from the technical point of view. The averaging method could also be used, which
leads to identical results and gives some advantages in validation (see reference [11]).

In order to apply the multiple-scales technique, we have to convert from a system of
ordinary di!erential equations (6) to a system with partial derivatives and two independent
variables t and q:

L2u
Lt2

#2u
L2u
LtLq

#u2
L2u
Lq2

"F Au,
Lu
Lt

#u
Lu
Lq

, t, qB#uU Au,
Lu
Lt

#u
Lu
Lq

, t, qB . (7)

The relationship between equations (6) and (7) is given by a condition, that if u(t, q) is
a solution of equation (7), then this solution taken along the straight line q"ut, i.e.,
x"u (t, ut) is a solution of equation (6). In other words, system (7) is more general than
equation (6), so we are free in choice of boundary conditions for this system. The only
restriction is that the straight line q"ut should be in the inner part of the considered area.
We require u (t, q) to be a 2n-periodic function of q and try to "nd u (t, q) as a formal
asymptotic expansion in terms of the small parameter e:

u (t, q)"w
0
(t, q)#ew

1
(t, q)#e2w

2
(t, q)#2 . (8)

Substituting this expansion into equation (7) and balancing the terms with equal orders of
e we obtain

e~2:
L2w

0
Lq2

"0, (9)

e~1:
L2w

1
Lq2

#2
L2w

0
LtLq

"U Aw0
,
Lw

1
Lq

#

Lw
0

Lt
#u

Lw
0

Lq
, t, qB, (10)
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e0 :
L2w

2
Lq2

#2
L2w

1
LtLq

#

L2w
0

Lt2
"F#

LU
Lx

w
1
#

LU
Lx5 A

Lw
1

Lt
#

Lw
2

Lq B . (11)

The last step must be justi"ed, because the second argument of all the functions on the
right-hand sides of the equations in given as

Lw
1

Lq
#

Lw
0

Lt
#u

Lw
0

Lq
. (12)

This expression can take values of the magnitude order of our big parameter u. So it can
create in our equation terms of any order, depending on the kind of dependence of U from x5 .
However, if we require U, as usual, to be a bounded function in the vicinity of the solution of
the averaged system, we reduce the problem to the a posteriori check of our assumptions
about the magnitude order of x5 in the vicinity of the found solution.

However, in our case the problem is insigni"cant. The general solution of equation (9) has
the following form:

w
0
(t, q)"X(t)#A(t)q, (13)

According to the periodicity of w
0
, we get

A(t)"0.

Hence, w
0
"X(t). This depends only on the slow time t and the large terms in equations (11)

and (12) disappear automatically. However, we shall return to this analysis later,
considering systems with very strong excitation. For these systems it will be of paramount
importance.

The objective of the following analysis is to discover di!erential equations for the still
unknown function X(t), which do not contain the fast time q.

Equation (10) after substituting in it the solution of equation (9) takes the form

L2w
1

Lq2
"U AX, X0 #

Lw
1

Lq
, t, qB . (14)

It is natural to call this equation &&The Equation of Fast Motions''. It is a di!erential
equation with only partial derivatives in respect q. That is why we can take X, X0 and t to be
constant parameters during solving equation (14).

The main assumption of this analysis is that we know the general 2n-periodic with respect
to q solution of the system of n "rst order di!erential equations

Lu

Lt
"U(X, u, t, q) (15)

in which X and t are taken to be constant:

u"U(X, t, q, C).

Here C is a vector of arbitrary constants, which can be found due to the condition of the
periodicity of w

1
, i.e., we have to annihilate the average of Lw

1
/Lq:

SU(X, t, q, C)T"X0 . (16)
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If we succeed in solving this equation in respect to C, we can rewrite the solution of equation
(14) as follows:

u"U (X, X0 , t, q), w
1
"(t, q)#X

1
(t), (17)

W(t, q)"P
q

0

(U!X0 ) dq. (18)

The new unknown function X
1
(t) is a small slow correction to the main slow part of the

solution X(t). System (15) is signi"cantly simpler than the original system (6), because its
order is twice lower and we can take all the functions of slow time t to be constant. In other
words here, we are not interested in the slow evolution of the system, but only in its
high-frequency oscillations.

Let us move on now to the equation of second approximation (11) as follows:

L2w
2

Lq2
"

LU
Lx5

Lw
2

Lq
#F#

LU
Lx

w
1
#

LU
Lx5

Lw
1

Lt
!2

L2w
1

LtLq
!XG . (19)

This is a system of n "rst order linear inhomogeneous equations with periodic coe$cients.
The unknown function is Lw

2
/Lq . The necessary condition for the existence of its periodic

solutions is well known:

TWT
* GF#

LU
Lx

w
1
#

LU
Lx5

Lw
1

Lt
!2

L2w
1

LtLq
!XG HU"0. (20)

Here W
*

is the fundamental matrix of solutions for a system conjugated to the
homogeneous part of equation (19):

LW
*

Lq
"!A

LU
Lx5 B

T
W

*
(21)

In order to get the "nal form of equation (20), let us notice several identities:

TWT
*

LU
Lx5 U"0, TWT

*
LU
LxU"0, TWT

*
LU
Lx5

LW
Lt U"TWT

*
L2W
LtLqU . (22)

Due to the identities, one can show, that equation (20) does not contains X
1
(t), and reduce

this equation as follows:

SWT
*
TXG "TWT

*GF#

LU
Lx

W!

L2W
LtLqHU . (23)

Lastly, the function W depends on t both direct and indirect through functions X (t) and X0 (t).
Under L/Lt we understand here the full partial derivative with respect to t. Taking this into
consideration and using the partial derivatives we will obtain the "nal explicit form of
equation (23):

M(X, X0 , t)XG"V(X, X0 , t). (24)
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Here,

M(X, X0 , t)"TWT
*

LU

LX0 U, V(X, X0 , t)"TWT
*G

LU
Lx

W!

LU

LX
X0 !

LU

Lt HU
#SWT

*
F(X, U, t, q)T. (25)

Equations (24) do not contain fast time and determine slow evolution of the solutions of
the original system (6). That is why they could be called &&Equations of Slow Motions''.
Function V(X, X0 , t) is natural to call &&vibration force'' and Matrix M(X, X0 , t) can be
interpreted as a matrix of the averaged system's e$cient mass with respect to slow motions.
This matrix depends on the solution of the equations of fast motions, i.e., on the amplitude
of fast excitation.

If we have initial conditions for the original system

x D
t/0

"x
0
, xR D

t/0
"l

0
, (26)

then the initial conditions for the averaged system can be calcualted as follows:

X D
t/0

"x
0
, X0 D

t/0
"m

0
!

LW
Lq K

t/0,q/0

. (27)

If function U does not depend on x5 , system (24) goes over into equations, well known, for
example, from the works of Blekhman [4]:

XG "TF#

LU
Lx

WU . (28)

4. AN EXAMPLE OF SYSTEMS WITH STRONG EXCITATION

Let us give a simple example, illustrating several properties of systems with strong
excitation.

An example, showing the main property of systems to be considered: the e!ective mass of
the averaged system can di!er from its real mass and depends on the amplitude of the
excitation can be found in reference [11]. We are going now to consider another example,
which has simple mechanical origins.

The equations with strong excitation appear naturally, as it was mentioned above, in
systems with oscillating inertia coe$cients and in continuous systems with periodic
structure. Let us take the simplest example of such an equation:

A
x5

1#c(t) cos utB
.
#x#ax3"uf (t) sin (ut#h). (29)

We can rewrite this equation as follows:

x("!(x#ax3) (1#c cos q)#
x5 c5 cos q

(1#c cos q)
#uf sin(q#h)(1#c cos q)!u

x5 c sin q
(1#c cos q)

.

(30)
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This is a system with strong excitation. Referring back to the general form (6) we can sign

F"!(x#ax3)(1#c cos q)#
x5 c5 cos q

(1#c cos q)
,

(31)

U"f sin(q#h)(1#c cos q)!
x5 c sin q

(1#c cos q)
.

The corresponding equation of fast motions has the form

Lu

Lq
"!

uc sin q
(1#c cos q)

#f sin(q#h)(1#c cos q). (32)

Its solution, which ful"ls the condition SuT"X0 is

u"(X0 #1
2

fc cos h!f cos(q#h))(1#c cos q). (33)

Solution of the system conjugated to the homogeneous part of the equation of second
approximation

LW
*

Lq
"

cW
*

sin q
(1#c cos q)

(34)

is also simple to "nd

W
*
"

1

(1#cos q)
. (35)

Averaging the corresponding terms we shall obtain

M"TW
*

Lu

Lx5 U"1,

V"TW
*GF (X, U, t, q!

Lu

LtHU"!X!aX3!1
2

( fc )
.
cos h.

Finally, we obtain the equation of slow motions

XG#X#aX3"!1
2

( fc)
.
cos h. (36)

This equation has several interesting peculiarities. Firstly, in this case, there is no
transformation of the e!ective mass of this system or its natural frequency. Instead of it we
have another interesting phenomenon*transformation of the slow excitation's character.
There are both external and parametric high-frequency excitations in the original system. If
the high-frequency excitations are slowly modulated through the functions f (t) and c (t), it
means, that we do not only deal with the high-frequency but also with the low-frequency
parametric and external excitations of the original system. In the equation of slow motions
the parametric excitation disappeared. The external excitation is transformed in an



Figure 1. System with strong excitation: (*) travel.

Figure 2. System with strong excitation: (*) velocity.
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unexpected way. It got to be proportional to the "rst derivative of the product of the slow
variable amplitudes of both external and parametric high-frequency excitations.

The properties of the averaged system are illustrated through the following "gures,
obtained through the numeric simulation of the full equation (29). Figures 1 and 2 show the
solution for the following values of parameters:

a"0, u"100, h"0, f"1#1
2

sin t;, c"
1

3(1#1
2

sin t)
.

This "gure illustrates the typical character of the solutions of systems with strong excitation,
which is a superposition of slow motion and fast oscillations. Important here is, that the
amplitude of the fast oscillations is small in relationship to the amplitude of the slow
changes of the generalized co-ordinates. The amplitude of the fast velocity oscillations is
comparable with the amplitude of its slow evolution.



Figure 3. Slow resonance in the system with strong excitation: (*) travel.

Figure 4. Slow resonance in the system with strong excitation: (*) velocity.
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In this case, we have ( fc)
.
"0. As it can be seen, in this case we have only free oscillations

of the averaged system. Figures 3 and 4 show the results of the simulation for the case
( fc)

.
O0:

f"1, c"
1

3(1#1
2

sin t)
.

In this case, according to the prediction, we have a typical picture of the external non-
parametric resonance with the linear increasing amplitude of slow oscillations. In these
cases there is no visible di!erence between the two predictions. Figure 5 shows the
comparison of analytic and numeric solutions for u"5. We can see, that, although in this
case the small parameter is not small enough, the asymptotic solution still gives the
qualitative character of the system's movement. However, the quantitative di!erences are
signi"cant.

5. SYSTEMS WITH VERY STRONG EXCITATION

We should now consider the signi"cantly more di$cult case of systems with very strong
excitation. Initially, the same system with one degree of freedom should be considered when



Figure 5. Comparison of asymptotic and numeric solution. Travels (*) asymptotic solution; (*) numeric
experiment.
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the external excitation is very strong:

A
x5

1#c (t) cos qB
.
#xax3"u2f (t) sin(q#h). (37)

This equation can be rewritten as follows:

x("u2 f sin(q#h)(1#c cos q)!u
xR c sin q

(1#c cos q)
#

xR cR cos q
(1#c cos q)

!(x#ax3) (1#c cos q).

(38)

We are going to apply the multiple-scales technique and try to "nd a solution of equation
(38) in the form of equation (8). In this case, however, we shall get an important equation
already balancing the terms to the magnitude order of u2:

L2t
0

Lq2
"f sin(q#c cos q) (1#c cos q)!

c sin q
(1#c cos q)

Lt
0

Lt
. (39)

It can be noticed, that, denoting Lt
0
/Lq through u, the previously analyzed equation of fast

motions of a system with strong excitation is obtained. Its solution is already known. The
only di!erence is that now its average has to vanish, i.e.,

SuT"0.

The corresponding solution is

u"(1
2

fc cos h!f cos(q#h)) (1#c cos q),
(40)

t
0
"X

0
(t)!f sin(q#h)!1

4
fc sin(2q#h)#1

2
fc2 sin q cos h.

Our objective is to "nd an equation determining X
0
(t), which does not contain the fast

time q.
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The equation of the "rst approximation should now be considered:

L2t
1

Lq2
#2

L2t
0

LtLq
"!

c sin q
(1#c cos q) A

Lt
0

Lt
#

Lt
1

Lq B#
cR cos q

1#c cos q
Lt

0
Lq

. (41)

We denote
Lt

0
Lt

#

Lt
1

Lq
"l.

For the new variable l, a linear equation with periodic coe$cients will be obtained:

Ll
Lq

"!

c sin q
(1#c cos q)

l!(1#c cos q)
L
Lt A

u

1#c cos qB . (42)

This equation does not contain X
0
. Meaning, this equation cannot be used to determine the

slow part of the solution. However, it gives us a restriction, which is able to be ful"lled by
functions f (t) and c (t). This restriction is necessary for the solutions of this type to exit. This
condition is not di$cult to "nd if we, as usual, require the periodicity of the solution of
equation (42). This condition has the following form:

T
L
Lt A

u

1#c cos qBU"S1
2

( fc)
.
cos h!f cos(q#h)T"1

2
( fc)

.
cos h"0.

So the functions f (t) and c(t) have to ful"l the equation

( fc)
.
cos"0. (43)

Assuming, that this condition is ful"lled, we can then "nd the function l if we rewrite
equations (42) in a simple form

L
Lq A

l
1#c cos qB"!

L
Lt A

u

1#c cos qB"f cos(q#h).

Its solution, which ful"ls the periodicity condition for t
1
,

SlT"XQ
0
, (44)

is

l"(XQ
0
!1

2
fRc sin h#fR sin(q#h))(1#x cos q),

t
1
"!A2!

c2

2 B fR cos(q#h)#
1

4
fRc sin(2q#h)#XQ

0
c sin q (45)

#fccR cos h cos q#X
1
(t).

Finally, the equation of the second approximation must be considered:

L2t
2

Lq2
#2

L2t
1

LtLq
#

L2t
0

Lt2
"!

c sin q
(1#c cos q) A

Lt
1

Lt
#

Lt
2

Lq B#
cR cos q

(1#c cos q) A
Lt

0
Lt

#

Lt
1

Lq B
!(t

0
#at3

0
) (1#c cos q). (46)
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A new variable will now be introduced:

q"
Lt

2
Lq

#

Lt
1

Lt
.

q will be de"ned by the following equation:

Lq

Lq
"!

c sin q
(1#c cos q)

q!(1#c cos q) Gt0
#at3

0
!

L
Lt A

l
1#c cos qBH . (47)

Requiring, this equation to have a periodic solution, we obtain the equation of slow
motions,

S!XG
0
#1

2
( fRc).!f K sin(q#h)#t

0
#at3

0
T"0.

After calculating the average, we "nd the "nal form of this equation,

XG
0
#G1#

3

2
af 2 A1#

1

16
c2#

1

4
c4 cos2 h!c2 cos2 hBH X

0
#aX3

0
(48)

"

1

2
( fRc). sin h#

3

16
af 3c sin hA1!

1

4
c4 cos2 hB.

The main properties of this system are very similar to those of the system with strong
excitation. The frequency of the free oscillations of the averaged system depends on the
amplitude of the high-frequency excitation. If both external and parametric excitations are
slowly modulated, we can "nd both the parametric and external slow excitations of the
averaged system. However, they are signi"cantly changed. For the slow parametric
excitation to exist, the system has to be non-linear (aO0) and it is therefore necessary to
have a modulated external excitation ( fO0).

If we take the simplest linear situation, we obtain an equation, which is very similar to the
situation of strong excitation:

XK
0
#X

0
"1

2
( fRc). sin h. (49)

The only di!erence is that the external slow excitation depends on the second derivative of
the slow modulation. Another point is, that in this case the excitation is proportional to the
sines of the phase di!erence between the external and the parametric high-frequency
excitations*not to the cosines as in the previous case.

It should be noted that a particular example of this system, without parametric
excitation, was considered by Nayfeh and Nayfeh [12]. Equation (48) conforms completely
to their results.

Figure 6 represents the direct numeric simulation results with regard to the full equations
(37). The calculation was carried out using the following parameters:

a"0, h"0, u"100, f"1#1
2

sin t, c"
1

3(1#1
2

sin t)
.



Figure 6. System with very strong excitation. Weak response: (*) travel.
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It can be noted that the solution now is a superposition of fast oscillations and comparable
large slow motions*even at the level of the generalized co-ordinates.

At the beginning of this analysis it was assumed that the necessary condition for the
existence of such solutions was represented as follows:

( fc)
.
cos hO0.

However, the equation must be analyzed in the event of this condition being unful"lled.
No solution with an amplitude of order 1 exists in this case. However, there are solutions

with bigger amplitudes. In order to explain this, the simplest linear situation will be taken
and the scale of our variable x changed:

x"uz. (50)

For the new variable z an equation will be obtained as follows:

zK"!z(1#c cos q)#
zR cR cos q

(1#c cos q)
#uf sin(q#h)(1#c cos q)!u

zR c sin q
(1#c cos q)

. (51)

This is only the linear variant of the previously analyzed equation with strong excitation
(30). Its solutions are known.

Hence, in systems with very strong excitation we should distinguish between two types of
solutions. These will be referred to as &&weak response'' and &&strong response''. The strong
response with a slow amplitude, signi"cantly greater than 1, can exist under more general
conditions than the weak response. If some additional restrictions are placed on the
character of the excitation's modulation, the weak response appears side by side with the
strong response. Its amplitude has the magnitude order of 1. Figure 7 represents the direct
numeric simulation results with regard to the full equations (45). The calculation was
carried out using the following parameters:

a"0, h"0, u"100, f"1, c"
1

3(1#1
2

sin t)
.



Figure 7. System with very strong excitation. Strong response: (*) travel.
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In this situation, the weak response does not exist. The reaction of the system is typical for
the external resonance, as predicted by the equation of slow motions (36). The amplitude of
the oscillations has from the very beginning the magnitude order u. The described
properties of this particular system with very strong excitation is not a coincidence.
Unfortunately, there are signi"cant di$culties in the asymptotic analysis of general systems
with very strong excitation. These di$culties are connected with the problem, that instead
of terms, containing the generalized velocities x5 , terms such as those in equation (12) with
Lw

0
/LqO0 will be obtained. If the right-hand sides of the equations depend on x5 arbitrary,

these terms give rise to terms of the arbitrary asymptotic order. This situation forces
a special form of system to be chosen. It is important to look at how the right-hand sides of
the equations depend on the generalized velocities. For example, the previous analysis can
be generalized for mechanical systems:

xK
k
"u2Uk

2
(t, q)#u

n
+
i/1

Uk
1i

(t, q)xR
i
#

n
+
i/1

n
+
j/1

Uk
0ij

(t, q)xR
i
xR
j

#

n
+
i/1

Fk
1i

(t, q)xR
i
#Fk(x, t, q), (52)

k"1,2, n.

The detailed analysis of such systems is beyond the limits of this paper. However, it must be
noted, that in this situation there are also two types of solutions, which correspond to
whether strong or weak response of the system to very strong excitation.

6. CONCLUSIONS

In this paper, the dynamics of systems are considered. These are described through
systems of second order di!erential equations. These systems are subjected to a strong
(magnitude order of big parameter u) or very strong (magnitude order of u2) high frequency
excitation. Equations of this type occur naturally if we analyze, for example, dynamics of
a machine housing, where inertia depends signi"cantly on the position of the moving parts
of the internal mechanism. Typical applications are a crank mechanism or a vane pump.
Another, perhaps even more important example of systems, with strong excitation
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depending on the "rst derivative of the unknown function, appears if we investigate
vibrations or wave propagation in the inhomogenious media. For example, the longitudinal
waves in a rod with a periodic or quasi-periodic structure. For systems with strong
excitation, an averaging procedure is shown, which allows a general study of such systems.
An example of a mechanical system with both parametric excitation and external
(non-parametric) excitation shows one of the typical properties of such system*that
modulated, high-frequency, strong parametric excitation in the presence of non-modulated,
external excitation can turn into slow external excitation. It can lead to resonance in the
system.

The same example is considered with very strong excitation. This illustrates the main
pecularities of the systems:

f there are two types of solutions, which can be called &&weak response'' and &&strong
response'';

f the "rst type of solution is more general; some additional conditions in the modulation of
excitation must be ful"lled for the of second type solutions to exist;

f other properties are similar to those systems, which have strong excitation, but both
external and parametric low-frequency excitations are possible in the averaged systems.

These results can be generalized for mechanical systems, where kinetic energy depends on
quadratic and linear forms of the generalized velocities.

Comparison of the asymptotic analytic solutions with numeric simulations of the full
di!erential equations (not averaged), illustrates the described phenomena.
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